Review For Exam 2

Instructions: The exam attempts to measure your level of understanding from basic to advanced and is therefore divided into 2 types of problems. 50% of the exam will consist of a subset of the true/false problems listed below. The other 50% will be made up from the homework problems, assignments, and other questions mentioned on the review list. This will, hopefully, make it hard to fail and hard to get a perfect grade.

Chapter 2

Lecture Notes to carefully study

- Nested Interval Chapter 2 (part d) 73-76
- Perfect Sets
- Cantor Set

Homework Problems

• HW 4 questions 12-16.

Hand-In Assignment Problems

• Study problems 1-4 on Hand-In Assignment 4

Comprehension Problems for Chapter 2

1. Determine which of the following intersections of subsets of **R** must produce a nonempty set. Which of these operations result in a set that contains only one point?

(a)
$$S = \bigcap_{n=1}^{\infty} [n, 1+n^3]$$

(b) $S = \bigcap_{n=1}^{\infty} [n/(n+1), 2)$
(c) $S = \bigcap_{n=1}^{\infty} [a, b_n]; b_0 = b, b_n = \frac{a+b_{n-1}}{2}$

- 2. Let E be the set of all $x \in [0, 1]$ whose decimal expansion contains only the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E perfect?
- Let Δ_α be a generalized Cantor set, in which the middle open interval of length α/3 is removed during the first step, two middle open intervals of length α/3² are removed in the second step, and, in general, 2ⁿ⁻¹ middle intervals of length α/3ⁿ are removed in the nth step. What is the length of Δ_α?

Chapter 2 (part d) 73-76 Chapter 2 (part d) 76-82 Chapter 2 (part d) 83-89

True, False or Incoherent?

- 1. The nested interval theorem guarantees that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ for any sequence of nested intervals $I_1 \supset I_2 \supset I_3 \supset ... \supset I_n \supset ...$ of **R**.
- 2. In any metric space, every nonempty perfect set is infinite.
- 3. In any metric space, every nonempty perfect set is uncountable.
- 4. Every dense set is perfect.
- 5. If P is a perfect subset of (M, d), then cl(P) = M.
- 6. **R** has a nonempty perfect subset that contains no rational numbers.
- 7. A nowhere dense set cannot have any limit points.
- 8. The compliment of a nowhere dense set is dense.
- 9. Suppose that A is a subset of some metric space (M, d) and that int(A)
 = Ø. Then A^c is a dense subset of M.
- 10. Suppose that *A* is a subset of some metric space (M, d) and that int(*A*)= Ø. Then *A* is nowhere dense in M.
- 11. A discrete metric space has no proper dense subsets.
- 12. A discrete metric space does not have any nowhere dense subsets.
- 13. The compliment of a dense set is nowhere dense.
- 14. The number whose decimal expansion is 0.0021 in base 3 is not an element of the Cantor set.
- 15. The number whose decimal expansion is 2.022022022... in base 3 is an element of the Cantor set.
- 16. The Cantor set is open in **R**.
- 17. The Cantor set is perfect in **R**.
- 18. The Cantor set is nowhere dense in **R**.
- 19. The Cantor function is decreasing.

Chapter 3

Lecture Notes to carefully study

 Basic Limits 	Chapter 3	1-5.
 Upper and Lower Limits 	Chapter 3	5-7.
 Special Sequences 	Chapter 3	7-9
 Series 	Chapter 3	9-34

Homework Problems

• HW 5 questions 1-9

Hand-In Assignment Problems

Study problems 1-4 on Hand-In Assignment 5

Comprehension Problems for Chapter 3

- 1. Suppose the real-valued sequence $\{a_n\}$ is increasing. What is the relationship between $\lim_{n \to \infty} a_n$ and $\limsup_{n \to \infty} (a_n)$?
- 2. Suppose that the real-valued sequence $\{a_n\}$ is given by the formula

$$a_{n} = \begin{cases} \frac{2k}{k+1} & \text{if } n = 4k \\ (-1)^{k} & \text{if } n = 4k+1 \\ \sum_{j=1}^{k} \frac{1}{j!} & \text{if } n = 4k+2 \\ 3^{-k} & \text{if } n = 4k+3 \end{cases}$$

Compute $\liminf_{n\to\infty}(a_n)$ and $\limsup_{n\to\infty}(a_n)$.

- 3. Suppose that a real-valued sequence $\{x_n\}$ is convergent with $x_n \to x$. What is $\liminf_{n \to \infty} (x_n)$ and $\limsup_{n \to \infty} (x_n)$? Justify your answer.
- 4. Let L₁ < L₂ < ... < L_n and suppose that any subsequence {x_{n(k)}}[∞]_{k=1} of the real-valued sequence {x_n} has a further subsequence {x_{n(k(t))}}[∞]_{t=1} that converges to one of the L_j. Find liminf(x_n) and lim sup(x_n). Justify your answer.

True, False or Incoherent?

- 1. All complex-valued sequences with a finite range are convergent sequences.
- 2. Let $\{s_n\}$ and $\{t_n\}$ be complex-valued sequences such that $\lim_{n \to \infty} (s_n + t_n) =$ L. Then $\{s_n\}$ and $\{t_n\}$ must be convergent sequences.
- 3. Every increasing sequence of real numbers is convergent.
- 4. Given a sequence $\{a_n\}$ in an arbitrary metric space (M, d), we can always compute limit supremum and limit infimum.
- 5. For any sequence of real numbers $\{a_n\}$, the inequality liminf $a_n \leq \limsup a_n$ always holds.
- 6. There exists a sequence of real numbers $\{a_n\}$, for which $T_n = \sup\{a_k : k \ge n\}$ is a strictly increasing sequence.

7. Suppose that $\sum_{n=1}^{\infty} a_n$ is a real-valued series such that for every $\varepsilon > 0$, there is an integer N, for which $\sum_{n=N}^{\infty} a_n < \varepsilon$. Then we may conclude that the series converges.

8. A series of non-negative real numbers
$$\sum_{n=1}^{\infty} a_n$$
 converges if and only if

the series
$$\sum_{k=1}^{\infty} 2^k a_{2^k}$$
 converges.

- 9. Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. If $\limsup \frac{a_{n+1}}{a_n} > 1$, the series diverges.
- 10. Let $\sum_{n=1}^{n} a_n$ be a series of positive terms. If the ratio test gives no information, then it is useless to try the root test.
- 11. Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. If the root test gives no information, then it is useless to try the ratio test.
- 12. The series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \dots + \text{ converges to 2.}$

Chapter 4

Lecture Notes to carefully study

•	Limits and Continuity	Chapter 4 (part a) 1-6
•	Abstract Continuity	Chapter 4 (part a) 6-10
		Chapter 4 (part b) 11-12
•	Connected Sets	Chapter 4 (part b) 12-19

Homework Problems

• HW 6 questions 1-15

Comprehension Problems for Chapter 4

- 1. Let $f: A \to B$ be any function and let $A_0 \subset A$ and $B_0 \subset B$.
 - (a) Show that $A_0 \subset f^{-1}(f(A))$ and that equality holds if f is injective.
 - (b) Show that $f(f^{-1}(B_0)) \subset B_0$ and that equality holds if f is surjective.

- 2. Let $f: A \to B$ be any function and let $A_i \subset A$ and $B_i \subset B$ for i = 0 and i = 1. Show that f^{-1} preserves inclusions, unions, intersections, and differences of sets:
 - (a) $B_0 \subset B_1 \Rightarrow f^{-1}(B_0) \subset f^{-1}(B_1)$. (b) $f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1)$. (c) $f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1)$. (d) $f^{-1}(B_0 - B_1) = f^{-1}(B_0) - f^{-1}(B_1)$.

Show that *f* preserves inclusions and unions only:

- (e) $A_0 \subset A_1 \Rightarrow f(A_0) \subset f(A_1)$.
- (f) $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.
- (g) $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$; show that equality holds if f is injective.
- (h) $f(A_0 A_1) \supset f(A_0) f(A_1)$; show that equality holds if f is injective.
- 3. Show that (b), (c), (f), and (g) of exercise 2 hold for arbitrary unions and intersections.
- 4. Let $f: (M, d) \rightarrow (N, p)$ be a function. Let $x \in M$. Decide whether the information below is sufficient to conclude that f is continuous or that f is discontinuous at x. Justify your answer.
 - (a) $f^{-1}(V)$ is open whenever V is an open neighborhood of f(x).
 - (b) $f^{-1}(V)$ is closed whenever V is an open neighborhood of f(x).
 - (c) $f^{-1}(V)$ contains an open neighborhood of x whenever V is an open neighborhood of f(x).
 - (d) $[f^{-1}(V)]^{\circ} = \emptyset$ for some open neighborhood V of f(x).
 - (e) $[f^{-1}(V)]^{\circ} \neq \emptyset$ for all open neighborhoods V of f(x).
 - (f) $f(x_n)$ is a convergent sequence whenever $x_n \xrightarrow{d} x$.
 - (e) *f* maps every Cauchy sequence $x_n \in (M, d)$ to a Cauchy sequence $f(x_n) \in (N, p)$.

(f) $x_n \in (M, d)$ is a Cauchy sequence, whenever $f(x_n) \in (N, p)$ is Cuauchy.

Hand-In Assignment Problems

• Study problems 1-4 on Hand-In Assignment 6

True, False or Incoherent?

- 1. All increasing functions of the form $f: (a, b) \rightarrow \mathbf{R}$ must have jump discontinuities.
- 2. A function $f: (a, b) \rightarrow \mathbf{R}$ that has only jump discontinuities has at most countably many points of discontinuity. [This is very hard!]

- 3. If $f: (a, b) \rightarrow \mathbf{R}$ is discontinuous at some point x = c. This discontinuity is necessarily a jump discontinuity.
- 4. Let $\{x_n\}$ be a sequence of real numbers and $\{\varepsilon_n\}$ be a corresponding

sequence of positive numbers such that $\sum_{n=1}^{\infty} \varepsilon_n < \infty$. Then the function *f* defined by $f(x) = \sum_{n > x} \varepsilon_n$ is increasing.

- 5. The function $f(x) = x^2$ is continuous. [Hint: be careful!]
- 6. Let $f: (M, d) \to (N, p)$ be continuous. Then $x_n \to x$ whenever $f(x_n) \to f(x)$.
- 7. If $f(x_n) \to f(x)$ for every continuous function $f: (M, d) \to \mathbf{R}$, then it must be the case that $x_n \to x$.
- 8. Let $f: (M, d) \rightarrow (N, p)$ be continuous. If E is a closed subset of M, then it must be the case that f(E) is closed in N.
- 9. If $f: (M, d) \to (N, p)$ is invertible with a continuous inverse f^{-1} , then for any open subset of M, V, f(V) must be an open subset of N.
- 10. Let $X_{\Delta}: \mathbb{R} \to \mathbb{R}$ be the characteristic function of the Cantor set. Then X_{Δ} is discontinuous at every point of the Cantor set.
- 11. Let $f: (M, d) \to (N, p)$ be a function and suppose that V is a subset of N that contains a neighborhood of f(x). If $[f^{-1}(V)]^{\circ} = \emptyset$, then f is **not** continuous at x.
- 12. Let M be a discrete metric space. Then any function $f: M \rightarrow \mathbf{R}$ is continuous.
- 13. Let d and p be equivalent metrics. Then the set of real-valued continuous functions on (M, d) is equivalent to the set of real-valued continuous functions on (M, p).
- 14. For any continuous real-valued function f on (M, d), the set $\{x : f(x) \ge 0\}$ is open in M.
- 15. For any metric space (M, d), there exists some function $f: (M, d) \rightarrow \mathbf{R}$ such that for any real number a, the sets $\{x : f(x) > a\}$ and $\{x : f(x) < a\}$ are open, but the function is **not** continuous.
- 16. If $f: (M, d) \rightarrow \mathbf{R}$ is **not** continuous. Then $f: (A, d) \rightarrow \mathbf{R}$ is not continuous for any subset A of M.
- 17. Suppose that $M = A \cup B$, where $A \cap B = \emptyset$. If $f: (A, d) \to \mathbb{R}$ and $f: (B, d) \to \mathbb{R}$ are continuous, then $f: (M, d) \to \mathbb{R}$ must be continuous.
- 18. Suppose that x is an isolated point of (M, d). Then any function $f: (M, d) \rightarrow \mathbf{R}$ must be continuous at x.
- 19. There exist Lipschitz functions that are not continuous.
- 20. The empty set ϕ is connected.
- 21. The Cantor set is connected.

- 22. Every connected subset of **R** that contains at least 2 elements is uncountable.
- 23. Let ϑ be a collection of connected sets. Then $\cap \vartheta$ is necessarily connected.
- 24. If A is connected in (*M*, *d*) and B is connected in (*N*, *p*), then A × B is connected in $M \times N$.
- 25. If A is connected in (M, d), then \overline{A} is connected in (M, d).
- 26. If \overline{A} is connected in (*M*, *d*), then A is connected in (*M*, *d*).
- 27. Suppose that for any continuous function $f : M \to \mathbf{R}$, f(M) is a connected subset of **R**. Then *M* is necessarily connected.